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This paper describes the development and testing of a 3D finite
difference code written specifically to model turbulence in an open
channel with a maving free surface. The code has been developed
50 that either a full simulation or a large eddy simulation (LES) of
the turbulence may be performed. The free surface may undergo
arhitrarily large deformations but the slope may not exceed a limit
related to the aspect ratio of the mesh and so the possibility of
breaking waves is excluded. The LES application demands numeri-
cal approximations which conserve mass, momentum, and total
energy with high precision, and it permits wave motion with very
little numerical dispersion or dissipation. We describe a novel nu-
merical method for tracking the free surface using a split-merge
technique which combines the valume of fluid and height function
methods in a way that is conservative. © 1995 Academic Press, Inc.

INTRODUCTION

The twrbulent motion of a liquid at a free liquid surface
and the physical processes involved there have an imporiant
practical role in the dispersion of pollutants in rivers and coastal
waters as well as being interesting in their own right. However,
our understanding of these processes is limited: partly by the
experimental difficulties of obtaining reliable and detailed tur-
bulence measurements close to a moving surface, and partly
due to the lack of a satisfactory numerical surface boundary
condition for k-g or algebraic models.

ft is now possible to use a supercomputer to integrate the
Navier-Stokes equations for turbulent flow without making
any modelling assumptions and. hence, to calculate any desired
low quantity. Flowever, this approach which is known as full
simulation (IFS) or dircet simulation (138) iz feasible onty lor

Nows ot relatively low Reynolds numiber and in regions ol

simple shape. The drawback to the method is that the computa-
tional effort required to model flows of engincering importance
(and, hence, large Reynolds numbers) lies beyond our reach
for the foreseeable future.

An alternative approach closely related to FS is large eddy
simulation (LES) in which only the large eddies or grid scales
{GS} are represented explicitly on a finite difference grid. The
interactions of the GS with the unrepresented small eddies or
sub-grid scales (SGS) arc represented by a sub-grid model
{(SGM). This method is therefore dependent on 2 model, but
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experience has sttown that the sensitivity of the results to the
details of the model is quite weak, which contrasts with the
much greater sensitivity of k-£ and algebraic stress models of
turbulence 1o their model constants,

1. NUMERICAL METHOD

The cade is hased on the Queen Mary and Westlield College
finite difference closed channel code ECCLES (see Gavrilakis
et al. [3]) which uses a conventional staggered grid and is
conservative; the flow must be periodic in the x and y directions,
but solid walls are allowed in the z direction. The object of the
present work is to incorporate a free surface and its associated
stress-free boundary condition, and to do this in an energy
conserving way. The authors felt that because LESs have long
integration times and it is necessary to conserve energy in the
finite sense (as well as that for wave propagation) then it was
not possible to use the more established techniques such as
(MAC), volume of fluid (VOF), or mapping of the domain.

2. GOVERNING EQUATIONS

We use Cartesian co-ordinates (x, y, z)} with x streamwise,
¥ spanwise, and z upwards, aligned with the channel which
slopes downwards at an angle # The fiow is maintained by
gravity g = (g,. g, g,) and we assume that there is nc externally
applied surface pressure. The velocity u and pressure p satisfy
the Navier—Stokes equations:

fdr+u-Vu=-Vp+ V- 7+g, {hH

V-u=1), (2)

where 7 denotes the viscous and subgrid stress. The elevation

of the free surface is given in terms of a single-valued height
function /r:

= hix, y, 1), 3)
lohfax) <= AziAx,  |anfay| = Az/Ay. (4

The maximum slope restriciion-—based on finite difference
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mesh size Ax, Ay, Az, is imposed because it allows a much
simplified surface locator. The single-valued nature of h ex-
cludes wave breaking. The kinematic free surface boundary
condition is given by

dhfat = (u-n) VS, (5)
S =1+ (3h/3xy + (ahidyy, (6)
= (—ah/dx, —dhidy, 1) A )]

Equation (5) states that the rate of change of surface elevation
is proportional to the flux of fluid over the surface; it can be
written in the more usual convective form by eliminating (u - n).
The quantity § is simply the ratio of sloping surface area to
vertically projected surface area, and n denotes the surface unit
normal vector. The dynamic free surface condition is:

n(r=-ph=0 (8

which states that both the total normal stress, including the
viscous component, and the tangential stress must be zero; 1
denotes the unit tensor.

3. SURFACE LOCATION AND TRACKING

The purpose of the surface locator is to define the position
of the free surface and to provide a means of moving it from
one place to another. in an LES simulation in which the same
fluid mass is recirculating through the computational box we
believe that it is essential to conserve mass exactly.

We considered several types of locator: marker particles;
VOF methods; and height functions. Chan and Street [1] in
their SUMMAC code used marker particles to define the surface
in 2D. This method is able to describe breaking waves but it
becomes difficult 1o implement in 3D because, not only do
surface elements stretch, meaning that particles must be added/
deleted, but they also rotate in the plane of the surface, which
means that the nearest neighbours computation is non-trivial.

A direct discretisation of the height function A(x, y, 1) and
the kinematic boundary condition (cf. Eq. (5)) was used by
Chan and Street [2] in a modified version of SUMMAC and
by Hirt, Nichols, and Romero [5] in SOLA-SURF. This method
is easy to implement but it does not guarantee exact mass
conservation over finite time steps, partly because continuity
is satisfied approximately (by iteration) and not exactly.

The VOF method of Hirt and Nichols [4] is based in part
on a finite control volume principle and does conserve mass
exactly; it also extends relatively easily to 3D and can handle
breaking waves, but in its original form the free surface could
not move smoothly through the mesh.

We have used a combination of VOF and the height function
methods; this conserves mass and allows for smooth surface
movement but it excludes breaking waves. The complexity of
the method follows partly from the staggered grid and the need
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FIG. 1. Staggered mesh.

for the masses in the mutually overlapping cells 10 be consistent,
and partly from the technique adopted to remove the potentially
singular behaviour of the momentum equations when applied
to a nearly empty cell. The latter is called the split-merge
technique and is described in more detail below.

We use a conventional staggered mesh as shown in Fig. 1.
The pressure points p;;, are located in the centred or continuity
cells whose fluid volume is Fcy, and the x-, y-, z-staggered
velocity cells contain the w., Uy, wiy velocities and the fluid
volumes Fx;,, Fyy, Fziy, respectively. (The c notation for Fe
is optional; its purpose is to simplify expressions involving F
or h.) The surface elevations hy; are defined for columns of
centred cells, and hx;, hy; are defined similarly for staggered
cells. The purpose of the surface locator is to provide a means
of relating the /4; and F;,. This relation is constrained in that
it must apply equally to the centred and staggered cells, and
we have adopted the simple rule;

hgg = Y, Fgy/(Ax Ay) forallg €{c,xy}.  (9)
k

This states that the height of a column is equal to the sum of
the F-values of the cells composing it and that this is true for
both centred and x-, y-staggered columns. In effect this is a
simple one-point integration rule, and its apparent crudity is a
necessary part of the mass and energy conserving treatment of
surface cells.

Clearly, the staggered and centred forms of F (or k) are not
independent quantities and must be mutually consistent; we
achieve this by using the algebraic relations

hxij = %(hc,-_,- + hC.‘—l.j)
“hry.‘j = %(hcf,j + hcf.j—l)

(10a)
(10b)
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to define the staggered elevations hx;, hy; in terms of the
centred elevations Ac;. A consistent set of x-, y-staggered
F-values then follows from a backward use of Eq. (9). The
z-staggered F-values are found similarly using the centred hc;
and partitioning the column by z-staggered cells rather than
centred cells.

The most chvious way of defining cell-based control volumes
is to intersect the nominal cell sides with the free surface; this
is equivalent to the VOF method and reduces to conventional
FD form in the interior. However, this presents at least two
problems.

First, it is possible for the volume to become very small,
and, hence, a potential singularity of the momentum equations
exists as F — 0. The singularity is apparent, rather than real,
and can be removed by modifying the intercell forces, but it
seems that this cannot be done without destroying the energy
conservation property (see later).

Second, the backward use of Eq. (9) is ambiguous for those
surface configurations which allow one partly filled cell to stack
on another. This arises because the integration rule does not
take the surface slope into account. We could have used a
higher order rule, but the methods of ensuring energy conserva-
tion depend on its essential simplicity.

We avoid these dilemmas by using cell-extension and split—
merge techniques in which potentially small cells are combined
with their immediate neighbour below, thus avoiding the poten-
tial for zero volumes and ensuring that only one partially full
cell exists in any one vertical column of cells. The techniques
also provide a natural way of allowing smooth movement of
the free surface diagonally across the mesh.

Figure 2 shows a column of cells which is intersected by
the free surface at H (or H') between the cell centre points B
and C, such that H is greater than or equal to B and less than
C. The type of cells A, B, C is immaterial because the principles
are appiied uniformly to centred (these are actually more com-
plicated) and staggered cells alike. The dotted lines show the
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FIG. 2. Surface cell extension.
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FIG. 3. Velocity cell split/merge.

extreme range of surface positions confined by the slope limit
Eq. (4). The tower cell with centre A i3 an interior cell and is
full. The cell B is assumed to extend fully up to the surface
and is called an extended or surface cell, and the upper cell C
is assumed to be empty and takes no part until it is introduced
by a split—merge operation (see later), Thus there is only one
surface cell per vertical column and it always has: a complete
base, a complete free surface, and at least one immediate
neighbour adjoining in each horizontal direction, but not neces-
sarily confined to the same vertical level. The last point implies
some considerable programming complexity, but this is man-
ageable because the fundamental definitions are simple and
regular.

During a time step the free surface can move within the
interval BC without altering the control volume configurations;
if it moves outside BC the configuration switches, For exampie,
if H moves past C then the surface cell is split to yield a new
surface cell and a new interior cell, and if H moves down past
B the old surface cell and the interior ¢ell immediately below
are merged together to form a new surface cell. These operations
constitute the split—merge technique. Figure 3 illustrates the
methed for a velocity cell in which we have assumed Ax =
Ay =1 for simplicity. If the upper cell becomes less than half
full, i.e., that {, less than 4, it is combined with the one below
and a merged velocity u,, and volume F,, are assigned so that
mass and momentum are conserved:

lrn = la + l}n Uy = laua/(la + lb) + lbub/(la + lb)- (11)

As long as I, remains greater than or equal to $ and less than
£ the velocity and volume are advanced using the conventional
surface cell equations applied to the extended cell. If 7, exceeds
£ the extended cell is split, mass and momentum are reassigned
with both new cells taking the same old velecity. The method
deals naturally with the spiilage of fluid from one cell tc another.

The split-merge process is numerically stable, but it is not
strictly conservative. The kinetic energy KE . (= Lu43) of the
merged cells is always less than or equal to the kinetic energy
KEqu.: (= Lad + Lu}) of the individual cells. This is clear from
the inequality
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KEsplil - KEmcrge = %[a[b([a + tb)(du'rdz)z = 0’ (12)

where diufdz = 2(u, — w )/, + 4,).

The merge process dissipates energy while the split process
is neutral; thus it is stable overall. Note that the dissipation
occurs only at those points in time when the cells merge and
not during the time that they remain in any one state. Our early
experience with the code suggests that the additional dissipation
due to the split-merge technique is not significant.

The cell extension definitions above are applied consistently
to the x-, y-, and z-staggered (velocity) cells, but they need an
additional modification when applied to the centred (continuity)
cells. This is iflustrated by Fig. 4 which shows a columa of
centred cells intersected in the interval BC at H by the free
surface. The cell extension definition applied to this column
identifies cell B as the surface cell but note its relation to
the surface z-staggered (or w-cell)—which is either w, or w,,
depending on whether H is greater than or equal to w; or not.
Thus the pressure point of cell B may or may not have a w-point
between it and the free surface and the two situations are
fundamentally different. In the first case the pressure point is
an internal one determined by continuity equations, whereas in
the second case it is in essence external (but not physically)
and must be determined by some form of interpolation from
the surface boundary condition. We refer to these two distinct
types of pressure points as active and passive, respectively.

Consider Fig. 5, showing the kinematics of an active surface
cell. The velocity field is treated as constant within a cell (i.e.,
zeroth order interpolation) and the flux of mass over a plane
surface is given by the velocity times the area, and the area of
cell sides is given by the one-point integration rule.

The rate of change of volume is given by the flux of mass
over the instantaneous free surface,

d(Fe)ldt = wis) — 3, — Lwy — 3, — Lyug.  (13)

This expression is just the kinematic free surface boundary
condition Eq. (5) written in finite difference form with —u(dh/
¢lx} approximated by a centred average and Fc in place of .

FIG. 5. Surface advancement.

The rate of change of the volume given by the mass flux over
the wet sides of the cell is

d(FCC)/df - l_p,b!b - ldud + Wc(b). (14)

Eliminating dF/dr and using the interpolation rules (10) to
eliminate the heights /, and /, yields the particularly simple form

g — wp) + (W —w?) =0 (15)

for the continuity equation in an active surface cell. It reduces
to the usual interior form if we set [, equal to Az, in this example
unity. The distinction between active and passive (centred)
surface cells is necessary because the above equations would
be degenerate if applied to a passive surface cell.
Consistency also demands that when the surface moves and,
hence, when all the F-values change, that these changes are all
consistent with the velocity field; this, in fact, constrains the
functions that interpolate the velocity from the centres of the
staggered cells to their faces. The condition is equivalent to
demanding that continuity be satisfied in the staggered cells,
but because we do not have an independent equation (e.g., the
pressure eguation) to achieve this, it must be built into the
interpolation equations. With the present surface locator there
is only one interpolation allowed, and this is illustrated below.
Consider the surface u-cell shown in Fig. 6, in which, again
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FIG. 6. Plan view of surface cells.
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Ax = Ay = 1 and ] denotes the vertical length of a cell. The
centred cells b, d have volumes of I,, [, and the u-cell has
volume /.. Mass conservation in the centred cells, which is
imposed explicitly by the pressure correction, implies that

(16a)
(16b)

d(lb)/df = luua - lcuc + lfUJr - l;,Uh + Wy
diiyide = Lu, — Lu, + Lo, — bvi + wy,

where the w denotes the vertical flux through the base of the

cell. Mass conservatton in the x-staggered (or u-cell) then de-

mands that

dil.ydr = g, — qu + g, — g + w,, (7
where g (or w) denotes a mass flux. Because the surface locator
computes the volume of the u-cell from the average of the
volumes of the centred cells on each side, it follows that Eq.
(17) is the average of Eqs. (16}, and therefore that

2qb = laua + lc“c» 2% = Iruc + leue»

2g; = bup + L, 2q0 = Ly + lws, (18)

2w, = wy + wy,

Hence the interpolation is by flux rather then velocity averaging,
but it reduces to velocity averaging in the fluid interior.

4. MOMENTUM TERMS

In the interior these are implemented using a standard central
difference operator, as in ECCLES [3], which conserves energy.
This is modified for surface cells and conserves kinetic energy.
This is illustrated for the simple case shown in Fig. 7 in which
there are no jumps in the free surface location and the staggered
cell has only one immediate neighbour in the x- and y-directions.
For simplicity we consider only the 2D case in which Ax =
Ay = 1, but the principles are applicable more generally.
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FIG. 7. Momentum flux arrangement in a surface cell.
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The momentum equation applied to the staggered (u-veloc-
ity) cell C is

A(luMdt = §(u, + u)gs + 3w + u)gy (19)
- %(ue + uc)Qd-

The momentum flux across 4 surface separating two cells is
taken as the simple average of the velocity of each cell
multiplied by the mass flux between the two cells. In effect,
the mass flux term can be regarded as the result of using a
flux-average interpolation method for the transporting velocity
field. We can demonstrate that Eq. (19) leads to a conservative
scheme by invoking the identity
@l ulWde = ud(lu)dr — nid(l )dt (20)

and, substituting Eqs. (17) and (19) to yield the flux conserva-
tive form,

dElud)de = Huu)qs + $upedgy — Huae g, (21)
The convection approximation thus conserves kinetic energy
for an arbitrary configuration of the surface. Note that the flux
of kinetic energy between two cells is equal to the product of
the two velocities and the mass flux. The equations generalise
to 3D with the addition of flux terms for the extra dimension.
The sitwation becomes more complicated in 2D, and this is
compounded in 3D, when the surface configuration has
“‘jumps.”

The new complications introduced when the surface config-
uration possesses a jump can be illustrated by a 2D example.
We will consider this first to establish the key principles and
then to consider the additional problems in extending to 3D.

Consider the sloping surface shown in Fig. 8. The cell exten-
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FIG. 9. Flux interpolation 2t a jump: (a) between u cells; (b} between w cells.

sion definitions when applied to each vertical column lead to
discontinuities or jumps in the pattern of FD control volumes.
A jump occurs at the boundary of adjacent cells when one cell
has more than one immediate neighbour on a side. Jumps can
be labelled as UP or DOWN when moving in an increasing
co-ordinate direction, or POSITIVE or NEGATIVE, giving the
co-ordinate direction in which the extra cells appear. Figure §
shows examples of jumps in both the u- and w-cells.

The jumps alter the method assigning mass fluxes. In the
previous examples without jumps one could use local interpola-
tion rules based on flux averaging to achieve automatic mass
conservation in all the staggered cells, provided only that conti-
nuity was satisfied in the centred cells. It turns out to be quite
difficult to design local interpolation rules with the required
properties in 3D with the presence of jumps; the main problem
is the complexity of dealing with the configuration of the sur-
rounding cells and the interaction amongst all three sets of
staggered cells. We have adopted a compromise in which the
mass conservation propertics are exactly satisfied but at the
expense of introducing a non-local element in the w-flux inter-
polation.

The method is to calculate the horizontal mass fluxes first,
using an appropriate form of interpolation (see later), and then
to calculate the vertical fluxes by explicitly enforcing continu-
ity. Of course, the results are only meaningful if mass conserva-
tion has been enforced previously in the centred cells.

Typical examples of horizontal fluxes calculations are shown
in Figs, 9a and b and we consider first the flux between u-cells.
The fluxes g; and g; are found by first calculating the average
flux @, over the whole interface b, using the formula

20, = lu, + llu + 'u 22y

and then partitioning (J, in proportion to the lengths [/, and /;
to give

(5 + bas = 10, (23a)

(15 + gy = Q. (23b}

The horizontal interpolation for ¢ must be flux-averaged to
ensure that the mass of staggered vertical columns is conserved
and is an integral part of the surface locator scheme; the only
freedom we have is in choosing the partitioning of Q. As we
have avoided designing a local interpolation scheme to enforce
mass conservation, which would constrain our choice if we
found it, we arbitrarily partition assuming constant flux. The
fluxes ¢, and g; are found by the same method, and this leaves
only the vertical fluxes g7 and g, (see Fig. 9a). The lower flux
is sufficiently far into the fluid interior to be determined by
non-surface rules and is found by flux averaging w-velocities;
the upper flux g, is found by imposing continuity, i.e., from

q: =g+ g — 4 {24)
The result differs from what would have been obtained by flux
averaging of the local w-velocities, but it ensures that mass is
conserved in the surface staggered cells even in the presence
of jumps and that it is consistent with the general order of
interpolation used in the surface cells.

The horizontal fluxes between pairs of w-cells are calculated
as illustrated in Fig. 9b by supposing that the velocity in the
u-cells spanning the interface is constant over the ceil. The
total flux over the interface is found by summing the individual
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velocity contributions multiplied by the surface areas. For ex-
ample, we have

qs = (. — Hu, (25a)

g7 =10 + hu,. (25b)
Note that we have, again, assumed that Ax = Az = 1. The
above rules when applied consistently are sufficient to define
all the horizontal fluxes amongst the staggered cells. The verti-
cal fluxes are then defined by using the interior flux at the
base of the uppermost full cell in any vertical column and the
continuity equation in the same cell, The result is a set of
consistent and conservative fluxes for fluid flow amongst all
the staggered and centred cells.

The momentum flux terms are implemented using a general
transport algorithm for the field variable &. Suppose that cell
a has volume F, and ®,, and has a number N of neighbouring
cells of which cell b is typical. Also, suppose that a mass flux
Q. flows into cell g from cell b. Hence we can write

dFMdt =7 Q. (& =1,N)
d(FDdt = > 3D, + D)0, (P=1,N),

(20a)
(26b)
where we have used simple averaging of &. This is a generalisa-

tion of Eq. (19) used above for a surface cell without jumps.
Conservation of F4? follows from using the identity

dGF PO/ dr = O d(F. D) dr — DLd(F,)/dt 2n
and Eqs. (26a) and (26b) to give
dGFODIdr =32, (P.B)Q, (B=1,N) (28

which is in conservative flux form. Kinetic energy conservation
follows if we replace @ by (x, v, w) and sum over the fluid
volume (see Eq. (21)). The terms on the right-hand side of Eq.
(28) cancel, leaving only boundary terms which for a solid wall
{e.g., at bed) vanish because either @ or Q is zero. Note that the
conservation property is conditional on mass being conserved in
the staggered cells, and that we have explicitly enforced this
in the presence of jumps.

5. VISCOUS STRESS TERMS

The viscous terms are implemented as in ECCLES [3] for
the interior cells and we will describe only the modifications
made due to the presence of the surface. The simplest case is
when there are no surface jumps and is illustrated below. The
complications introduced by jumps are confined to the inter-
faces between surface cells and the stress calculation for the in-
terfaces,
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FIG. 10. Viscous stresses in a surface ¢ell,

Consider the 2D surface example shown in Fig. 10. The
u-cell is in the xz-plane and for simplicity we have chosen Ax
= Az = 1. The viscous stress is denoted 7 and its components
on the co-ordinate axes are 7,,, T,,. The surface stress compo-
nents are denoted 7,, and 7, where the surface co-ordinates
(s, n) are measured locally in the tangential and normal direc-
tions. The unit normal vector n located at ““¢’” is given by

n-= (nxs nz) = S_](ta' - lb, 1) (293)
S=V(1+,— LY. {29b)

The viscous contribution to the u-cell momentum is given by
summing the stress contributions from all its sides, i.e.,

Fod(u)dr = 1(7)a — B(Tds — (Tie)e

(30)
+ (nzS)(Tsn)surfa:c + (HJS)(Tnn)surface-

The stresses 7, and T, are calculated from the local velocity
field, whereas the boundary stresses 7, and 7, are applied
externally and can be freely chosen. The surface boundary
condition requires that the tangential str2ss component vanish,
and so we set

(1n) = 0, (31
although we could have prescribed a non-zero value due to,
for example, an external wind stress. The normal component
is unaffected by the boundary condition and is evaluated from
the components of the unit normal vector n,, #, and the stresses
T.., T:;. Hence we write
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(Tnn)surfacc = nxnx(Txx)sun’ace + nxnz(’rxz)surface
(32)

+ nznx( sz)surface + R, ( Tz )surfau:c

which is also equal to the jump in pressure across the surface
when surface tension is neglected. Note that Eq. (32) requires
that 7, be evaluated at “*¢,”” whereas it is naturally located at
“b’" or *‘d’’; the interpolation is done on the whole of the
(n,n,7,,) term rather than just on the stress for reasons of compu-
tational convenience.

The equations applied to interior cells may be recovered
from those above by setting n = (0, 1), in which case 7, is
net needed, and evaluating 7., from the velocity field rather
than prescribing it. The surface treatment is thus a consistent
extension of the interior treatment.

At a surface jump the cell adjoins two cells on a single side;
this is illustrated in Fig, 11 for the positive x direction or xx-
interface, but the principles involved for the other interfaces
are the same. In order to conserve total momentum the total
force on the right-hand side of cell, A must exactly balance the
sum of the forces on the left-hand side of cells B and C, From
the figure, this implies that the rule for connecting cells across
a jump must be

'+ 1", =Vt ", (33)
where the stresses 7}, and 7), are calculated from the local
velocity field and 7,, is the average stress on the whole interface.
The possible jumps at other interfaces are simply different
expressions of the above example. The method of calculating
the stress 7 from the velocity field is intimately bound up in
the details of the particular interface and leads to many special
cases. These will not be enumerated here, but the principle is
to evaluate the necessary components of the velocity gradient
on the interface and to calculate the components of the viscous
stress from the conventional formulae.

6. PRESSURE EQUATION

6.1. Statement of the Pressure Problem

For convenience, we shall split the local fluid acceleration
du/dt into two separate parts: the pressure acceleration —Vp

and the remainder denoted H which results from all the other
terms in the Navier—Stokes equations. We shall also denote
the divergence of H by s, i.e., s = V-H. The underlying
equations associated with the pressure problem can now be
written in the convenient form

du/dt=—-Vp+H (34)

Vip =35, (35)
where the Poisson equation (35) is simply a re-statement of con-
tinuity.

Al the surface z = h(x, y, t) the pressure takes on a prescribed
value p.+(x, ¥, 1) equal to the externally applied pressure p,.{x,
v, £} plus the viscous stress component n- 7-n; this follows
directly by demanding that the total normal stress at the surface
vanishes. At the bed z = 0 we impose the no-slip condition
w = 0 at arbitrary time ¢ and, hence, dw/dt = 0. The boundary
conditions are, therefore,

(36)
(37

P=pusdx,y.8) onz=hixy1),

aplaz = H, onz =10,
and the pressure is assumed periodic in the x and y directions.
In the finite difference implementation we make the arbitrary
alteration to H of setting H, to zero in the bed w-cells. In effect,
we apply a constraining force to prevent any acceleration in
the cell. This allows us to solve Eq. (35) with the simplified
boundary condition

apldz =0 onz=20 (38)

but to obtain an identical pressure field. The pressure problem

et ? i W& b -
caa { /"” a{ \‘\ Sbab{
*p, Su, + ].’,i . ulu\b aa +P
lijk]
o .\w[ o
+P, o + Q +B el
FIG. 12. Logic diagram for FD-star in structure cell.
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FIG. 13. Gaussian profile.

is now stated in a less general form which efficient numerical
solvers can take advantage of. The effect of the pressure field
on the total kinetic energy K of the flow can be seen from the
energy equation

dKfdt =[] + | (~panoielu- W) dA, (39

where n denotes the unit normal vector, The first term [I repre-
sents the total energy change due to external body forces and
viscous dissipation, and the second term represents the pressure-
energy contribution from the surface boundary condition (36).
We have tried to design the discretisation of the pressure terms
in such a way that they satisfy the discrete version of (39) for
arbitrary configurations of the surface. Schemes that do not,
cannot be conservative. So far, we have been able to satisfy
the energy equation (39) only at the expense of accuracy: for
example, by reducing the degree of pressure interpolation used
in the surface cells. Our eatly experience indicates that the
errors will probably be too large, but this depends very much
on the particular flow and we have retained the scheme as a
code option. When the pressure is interpolated linearly in the
surface cells, the scheme has an energy conservation error

which is proportional to the squared vertical pressure gradient
(9p/az)* near the surface. We are considering ways of reducing
this, for example, by taking the gravity term into the pressure
variable and so removing the hydrostatic pressure gradient.
Again, the most appropriate technique will depend on the partic-
ular flow and we have, therefore, included in the code several
alternative ways of treating the gravity terms.

6.2. Discretisation

In the fluid interior, standard centred finite difference formu-
lag are used to represent the V? and V operators. Again, we
will confine the description to the modifications required for
the cells at or near to the surface,

The FD star is built up by combining the gradient operator
with the continuity equation for a surface cell. This process
can be expressed symbolically by the two equations

o = [2 AT Dist jemien + Hig (40)
0= 2, B(u, + u,), (41)

where the notation tries to imply in some consistent way a
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FIG. 14, Diagonal solution run.

summation of the appropriate quantities aronnd the cell. Equa-
tion (40) expresses the idea that the cell acceleration depends
linearly on the surrounding pressures; Eq. (41) is a statement
of continuity applied to a perturbed velocity. In these eguations
the quantities A are coefficients involving time and inverse
lengths, and the quantities B are areas of the faces surrounding
cell ijk.

Combining the two equations to eliminate du and keeping
track of the coefficients of pressure leads to the FD star for
the surface cell {jk This is expressed in terms of the star
coefficients Cf", where (jk denotes indices of the pressure cell
and /mn denotes the relative indices of the neighbouring cells:

0 = 2 ij";i"p,'+,_j+mlk+,, + Sfjk fOr lmn = {" l, 0, + 1}

intn

(42)

Of the 27 coefficients implied above only the 15 located in the
(xz) and ( yz) plane are, in general, non-zero. This is because
interpolation of the pressure is confined to the vertical direction,
thus linking pressure cells vertically, but it is not performed
sideways. The surface boundary condition enters the star coef-
ficients as part of the pressure interpolation and contributes o
the source term.

Equation (42) is general enough to represent interpolation
formula; the coefficients and source term can be chosen appro-

priately to implement this. Also, we can apply the same equation
to points outside the fluid and recover the null valuoe py = 0
if we choose to set C to unity with all other CIi" and s is
set equal to zero. This is convenient because it allows the
equations to be defined on a regular mesh enclesing the fluid
and their solution by a standard procedure without reference
to the position of the free surface. However, more efficient
solvers which exploit the structure of the equations and make
explicit use of the surface information can be added without
difficulty. The coefficients and source term are recalculated at
each time step for the two uppermost layers of surface cells
only and are stored prior to the solution process.

6.3, Structure of the Finite Difference Star

The FD star Eq. {42} is built up according to the logical
structure imposed by the cell extension rules. This 1s illustrated
in Fig. 12. The dotted lines indicate the limits on possible
surface excursions imposed by the maximum slope condition.
We examine the logic concerned with the pressure p, at a point
known to be inside the fluid. The depth of this point determines
whether p, is interpolated, or, if not, how the control volume
is defined.

For example, if the surface cuts the interval a then p, is not
spanned by w-cells and the surface continuity equation cannot
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TABLE 1
v =00 y= 107
Ax, Ay, Az At PE KE TE PE KE TE
1 T/63 +238 160 +44 +I116 =252 63
T/6300 +22.1 167 +32 +102 =257 7.3
s T/125 +8.5 -69 +10 =53 =190 -i21
T/12508 +8.3 =70 +09 =57 -190 -—12]1
= Ti250 =0.1 +0.1 0y 114 113 —114
T/25000 —-02 -01 -01 -115 -—11.5 -115

be applied; instead py must be interpolated from below. This
is done by an appropriate modification of the coefficients and
source term of Eq. (42). When the surface cuts interval b the
existence of the upper w-ceil w, permits the surface continuity
equation to be used, and the control volume is extended up to
the surface. If the surface cuts interval ¢ the centred cell associ-
ated with py can never be intersected by the surface and thus
must be the natural control volume in which the surface continu-
ity equation is applied. The star is guaranteed to be identical
to the standard interior one if the surface cuts the open interval
d. This is because the u-cells u; and u, must be the uppermost
ones and, therefore, i, and u; must be standard full cells. In
this configuration the surface has no possible effect on the star;
it is tested for to provide a shortcut in the calculation and to
demonsirate that only two layers of stars need ever be calculated
at one time step.

Thus far the star is fully defined unless the surface cuts either
b or ¢; the subsequent conditional branches are shown on the
right and left sides of Fig. 12,

First, consider the case of the surface cutting b. The extended
control volume is used, and the configuration of the right u-cells
depends on whether the surface cuts ba or bb. If the cut is ba
there is only one u-cell 1, whereas if the cut is bb there are
two u-cells &, and u; to be considered.

The pressure points p,, p,, and p; are linked into the star
according to the logic governing the vertical interpolatton of
the pressure acting on the mid-point of the right-hand side of
the right u-cells. The number of possible branches is reduced
if we note that the p; point is governed by the first part of the
current logic; i.e., it is known to be interpolated if the surface
cuts within half a cell above it. This fact allows a branch in
the logic for interpolating past p; to be removed.

For the single cell case ba there are three distinct surface
intersections aa, bab, bac, each of which invokes an interpola-
tion rule for the pressure at the mid-point of the right-hand side
of the u-cell, and so it selects the coefficients for p,, p,, and
p;. In this case it is easy to show that baa selects p,, bab selects
p, and p,, and bac selects p,. For the two wu-cell case bb the
lower u-cell is full and therefore always invokes p,; the upper

AND WILLIAMS

u-cell invokes either p, when the surface cuts bba, or p; and
pywhen the surface cuts bbb, Again, the branching takes account
of the interpolation for p;.

Now consider case when the surface cuts the ¢ interval. The
control volume is the standard full cell, and the surface above
the left #-cell can cut only in ca or ch.

The first case ca produces a single u-cell, and the interpola-
tion is determined by the branch between caa and cab. The
first links in p, and ps, and the second links in ps only. The
second case cb produces two u-cells; the lower cell u; links in
ps. and the upper cell u, leads to the branches cba or cbb. The
first links in ps and the second links in ps and ps.

The logic above is applied independently in each of the
positive and negative x and y co-ordinate directions to assemble
the star coefficients.

In general, the effect of the cell extension method, apart from
complicating the calculation of the FD star, is to make the star
span more points: 9 in 2> and 15 in 3D, rather than the uwsual
5 and 7, In addition, the difference js confined to the top two
layers of cells and, therefore, only these need be recalculated
at each time step. The surface pressure boundary condition
enters the star as part of the interpolation rules and, as it is a
constant for the purposes of the pressure solution, it contributes
only to the source term.

7. SEQUENCE OF OPERATIONS

The velocity ulx, v, z, £) and surface elevation h(x, y, ¢) are
advanced over a time step At in the following way. A provi-
sional velocity u* is calculated from the Navier—Stokes equa-
tions, according to

u* =u() + 3 ArHip) — 3 At Hr — Af). (43)
This can be thought of as advancing the velocity but neglecting

the pressure contribution. The pressure p(¢) is found by solving
the Poisson equation

Vip + A V-ur =0 (44)
|
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with the appropriate boundary conditions. In calculating the
divergence terms for surface cells we have accounted for the
moving surface by adopting a stationary surface and allowing
the fluid to pass through it. The velocity advancement is com-
pleted by

u(r+ An =u* —$ArVp(o)
H(r} = H{t) + 3 Ar V(o).

(45a)
(45b)

The surface is advanced by calculating the change in volume

of a vertical column of cells A col; as a result of fluid flowing
into it during the time step. Thus we calculate

A col; = Ar: (Flux into coly), (46)

where the flux is based on the old elevations A(f) and the new
velocity u(x, v, z, £). The change of elevation follows from the
surface locator rules and is given by

hyt + Ay = hy(n) + (1/Ax Ay)(coly(n)

(47)
+ coly(t + Af).
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Once the new surface elevation is established the split-merge
process is applied to the velocity cells where necessary. Since
A col(r + Ar) is not known until u{r + Ar) is found (46) and
(47) are iterated several times. The above scheme is essentially
a Adams-Bashforth (AB) step for velocity and a Crank-
Nicholson (CN) step for surface elevation.

A linear stability analysis shows these mixed second-order
schemes to be very slightly unstable for free surface small
amplitude waves but the degree of instability is much less than
the damping introduced into the system by viscosity. As a user
defined option, though, a neutrally stable free surface long wave
system may be chosen which will invoke a forward Euler step

for the velocity and a backward Euler step for the surface eleva-
tions.

8. FIRST EXAMPLES OF USE

8.1. Gaussian Hill

In order to test the three-dimensiona! characteristics of the
code the decay of a small amplitude inviscid radially symmetric
wave was modelled. The wave had an initial Gaussian profiie
following the relationship 0.7 + 0.01 exp(—r¥10), where ?
= x* + y’. Figure 13 shows the wave after 200 time steps
using Ar = 0.05 and Ax = Ay =3, Az =}, g = 1.0, and with
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64 cells in the x and y directions. Euler time-stepping was used
for the velocity terms and, for the initial maximum height of
0.71, no split/merge routines were activated. Figure 13 shows
the wave to be perfectly symmetrical about its centre and for
the peak to be an approximately radial distance of 18 cells,
compared with the theoretical value of 17 cells.

8.2. Soliton Runs

We have run a train of finite amplitude solitons diagonaily
across the surface of a square box so as to exercise the split—
merge operations and to test the periodic boundary conditions.
The waves must be separated by 1/V2 of the box diameter to
satisfy periodicity along the box axes, and the characteristic
wavelength A = 44%/3D must be significantly smaller than this
to keep the waves separate and distinct; here 4 denotes the fluid
depth and D denotes the maximum wave height. The individual
solitons were calculated for D/d = § psing the second-order
approximation {see, e.g., Wehausen and Laitone [8]) thus ne-

glecting terms of G{D/d}*. The interactions between successive
waves in the train may be neglected, provided that they are
sufficiently far apart. The characteristic time for the waves is
T = V(dlyg), where g denotes the acceleration due to gravity,
and we have run the test with AYT = z5. The box is 164 long
with 64 cells along each side, so that the horizontal cell size
is Ax/d = Ay/d = 3; the vertical cell size is Az/d = 5. Again,
the energy conservative Euler time-stepping scheme was used.

The resolting surface elevation is shown in Fig. 14 after the
waves have travelled a distance of just over a box diagonal. It
exhibits some small amplitude perturbations on the trailing face
of each wave; these seem to be associated with the points where
the wave intersects the vertical mesh lines, and may be a side
effect of the split—merge process. In this test the split—-merge
process always acts at the same points on the wave and it is
expected that some errors should accumulate there. Overall,
the wave shows little effect of having been passed through a
mesh of cells.
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8.3. Viscous Channel Flow

We ran a laminar channel flow test problem to provide a
first check on the implementation of the viscous terms. The
code was able to reproduce the parabolic velocity profile of a
{diagonally) inclined channel flow with the correct zero stress
surface boundary condition. In order to further test the momen-
tum terms, the code was run with a point source of momentum
given to a w-cell in the body of the fluid. This was achieved
by over-writing the w-cell velocity by the value 1.0, and it was
calculated to be sufficient to invoke a sphit/merge in the surface
cells. This test enabled the radial symmetry of the viscous
stresses to be checked.

8.4. Viscous Decay of an Airy Wave

The energy decay of a viscous Airy wave of steepness 0.05
was investigated for varying degrees of spacial and time resolu-
tion. The wave length, box length, and fluid depth were each
given a value of 1.0 which resulted in a wave celerity of 1.25
with a period (T) of 0.8.

Table I gives values of the change (%) in potential, kinetic,
and total energy of the wave after it has travelled for a time
equal to one complete wave period. These results are given for
two values of viscosity: 0.0 and 1073, For this later non-zero
value the theoretical energy decay was calculated to be 11.9%
using the expression given in Lamb [6].

The first line of results for each value of the spacial resolution
is for a time step that gives a wave Courant number equal to
0.32 and the results below these are for time steps that are tath
of these values. This second set of results are given (o illustrate
the convergence properties of the finite difference schemes
used, in that the errors tend to zero as Ax and At — 0. It will
also be noted that the computed values of the energy decay
converge to the theoretical value as the spacial and time resolu-
tion increases. Mass was conserved exactly as the flow was
pericdic in both horizontal directions.

8.5, Interaction of a Vortex Pair with a Free Surface

The test of Ohring and Lugt [7], in which a pair of counter-
rotating vortices ascended towards and, subsequently, travelled
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away from, the free surface of a viscous liquid was investigated.
When the code is run to simulate turbulence the Reynolds
number will be very much higher {(and other properties of the
code become important, such as energy conservation) than in
this test. However, this test was still thought worthwhile as it
provides another rigorous check on the implementation of the
viscous stresses in the free surface cells. Figure 15 shows the
initial position of the vortices and the test chosen for comparison
was Re = 100, Fr = 0.4, and zero surface tension. Which,
using the relationships: Re = &/ and Fr = k/V{(ga®), gave
i =001and g = 6.25 for «k = @ = 1. { was set to 3 and
the depth of liquid to 6.

Ohring and Lugt used an adaptive-grid technique in which
the physical domain was mapped onto a uniformly spaced
Cartesian mesh. They used 201 points vertically and a hori-
zontal mesh density of 5( grid points per unit length around the
central region of computation. This spacing was then stretched
towards the boundary positioned at 10.8 length units from the
centre of the vortices, where they then used one-sided deriva-
tives as boundary conditions. The present authors used uni-
formly spaced cells with 60 vertically and 30 per unit length
horizontally, a resolution that was primarily dictated by ensur-
ing that surface slopes were within the cell aspect ratio. Periodic
boundary conditions were used, together with a time step of
1.666 X 107° time units (1 time unit = a*/x).

Figure 16 shows vorticity plots for various times taken from

the Ohring and Lugt paper, whereas Fig. 17 shows the corre-
sponding plots, obtained using the authors code, FRECCLES.
Figure 18 shows Ohring and Lugt values of the stream function
for the times ¢ = 3.52, 4.0, 5.02, and 6.52, whereas Fig. 19
shows plots of the values obtained from FRECCLES. It was
not possible for the authors to plot all the corresponding stream-
lines, as contour values are not given in the Ohring and Lugt
paper. Close agreement can be seen to have been obtained and
any small differences are attributed to the split—merge process
at the free surface of the authors code, together with the interpo-
lation procedures used in their plotting routines. An interesting
feature of the flow is the appearance of secondary vorticity
with an opposite sign to the main vortex produced at the free
surface by an interaction with the tangential stress boundary
condition, It can be seen that the positions of the vortices {(both
primary and secondary) and the surface profiles are in close
agreement to those of Ohring and Lugt [7]. The production of
secondary vorticity, in particular, is dependent upon endorse-
ment of the tangential stress condition.

8.6. Conservation of the Potential Energy

Figure 20 shows plots of the potential energy above the mean
surface elevation for the computational box against time for
the combined AB and CN schemes and the forward/backward
Euler scheme. The horizontal time scale is in letots, i.e., tme
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normalised by the friction velocity divided by the depth of
fluid, The initial conditions for these runs were taken from a
dump of the conditioned turbulent velocity field produced by
ECCLES [3] running the same problem but with a rigid lid.
Any significant deviation in the way the energy parameters
varied after the turbuient fields were transferred must be due
either to the removal of the lid or to numerical quirks of FREC-
CLES. Here we used g = 1000, slope = e, viscosity = 133,
the number of cells in the x, v, and z directions = 32, 64, and
16, respectively, the length of the box in the x and y directions
= 27 and 7, respectively, the friction velocity was 1.0, and the
depth = 1.0. Four different time steps Ar were used: 0.001,
0.0005, 0.00025, 0.000125. From the figure it can be seen that
as Ar — 0O all the curves converge as expected and that for
moderately large values of Az the errors in the AB + CN scheme
are much less than those of the Euler schemes. Further, the use
of a time step of 0.001 for the AB + CN scheme gave acceptable
errors in the potential energy. This time step, which is equivalent
to that which would be used in our ECCLES [3] code for the
equivalent rigid lid problem gave a convective Courant number
of 0.1 in the streamwise direction and wave Courant numbers
of 0.16 and 0.65 in the streamwise and spanwise directions.

9. CONCLUSIONS

The tests described above, together with detailed checking
of the code, were necessary in order to test that the code was
performing as it should, i.e., that the stresses, mass fluxes,
etc., were being calculated correctly and that the split—merge

technique was also working properly. The tests were also neces-
sary to show that the code conserved the important properties
of mass, momentum, and energy in the limit as Ar — 0. It was
posstble to show conservation of this latter property when using
a scheme that conserved the energy of small amplitude long
waves, but not when a second-order time-stepping scheme (nec-
essary for LES work) such as AB + CN was used. However,
it was shown that the combination of AB for the velocity terms
and CN for the surface advancement was acceptable for real
fluids. The authors intend to proceed with the code development
by introducing a sub-grid model. This can then be used with
the combined AB + CN scheme above to model turbulence in
an open channel,
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